Arbeitspapier

Which Model for Poverty Predictions?

OLS models are the predominant choice for poverty predictions in a variety of contexts such as proxy-means tests, poverty mapping or cross-survey impu- tations. This paper compares the performance of econometric and machine learning models in predicting poverty using alternative objective functions and stochastic dominance analysis based on coverage curves. It finds that the choice of an optimal model largely depends on the distribution of incomes and the poverty line. Comparing the performance of different econometric and machine learning models is therefore an important step in the process of opti- mizing poverty predictions and targeting ratios.

Sprache
Englisch

Erschienen in
Series: GLO Discussion Paper ; No. 468

Klassifikation
Wirtschaft
Personal Income, Wealth, and Their Distributions
Equity, Justice, Inequality, and Other Normative Criteria and Measurement
Incomes Policy; Price Policy
Economic Development: Human Resources; Human Development; Income Distribution; Migration
Thema
Welfare Modelling
Income Distributions
Poverty Predictions
Imputations

Ereignis
Geistige Schöpfung
(wer)
Verme, Paolo
Ereignis
Veröffentlichung
(wer)
Global Labor Organization (GLO)
(wo)
Essen
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Verme, Paolo
  • Global Labor Organization (GLO)

Entstanden

  • 2020

Ähnliche Objekte (12)