Arbeitspapier

Information based inference in models with set-valued predictions and misspecification

This paper proposes an information-based inference method for partially identified parameters in incomplete models that is valid both when the model is correctly specified and when it is misspecified. Key features of the method are: (i) it is based on minimizing a suitably defined Kullback-Leibler information criterion that accounts for incompleteness of the model and delivers a non-empty pseudotrue set; (ii) it is computationally tractable; (iii) its implementation is the same for both correctly and incorrectly specified models; (iv) it exploits all information provided by variation in discrete and continuous covariates; (v) it relies on Rao's score statistic, which is shown to be asymptotically pivotal.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP02/24

Classification
Wirtschaft
Subject
Misspecification
Partial Identification
Rao's score statistic

Event
Geistige Schöpfung
(who)
Kaido, Hiroaki
Molinari, Francesca
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2024

DOI
doi:10.47004/wp.cem.2024.0224
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kaido, Hiroaki
  • Molinari, Francesca
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2024

Other Objects (12)