Arbeitspapier

Information based inference in models with set-valued predictions and misspecification

This paper proposes an information-based inference method for partially identified parameters in incomplete models that is valid both when the model is correctly specified and when it is misspecified. Key features of the method are: (i) it is based on minimizing a suitably defined Kullback-Leibler information criterion that accounts for incompleteness of the model and delivers a non-empty pseudotrue set; (ii) it is computationally tractable; (iii) its implementation is the same for both correctly and incorrectly specified models; (iv) it exploits all information provided by variation in discrete and continuous covariates; (v) it relies on Rao's score statistic, which is shown to be asymptotically pivotal.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP02/24

Klassifikation
Wirtschaft
Thema
Misspecification
Partial Identification
Rao's score statistic

Ereignis
Geistige Schöpfung
(wer)
Kaido, Hiroaki
Molinari, Francesca
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2024

DOI
doi:10.47004/wp.cem.2024.0224
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kaido, Hiroaki
  • Molinari, Francesca
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2024

Ähnliche Objekte (12)