Artikel

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorithm, which is a variant of Tarjan's algorithm that simultaneously finds the SCCs and their belonging levels. Second, a new definition of the restricted MDPs is presented to ameliorate some hierarchical solutions in discounted MDPs using value iteration (VI) algorithm based on a list of state-action successors. Finally, a robotic motion-planning example and the experiment results are presented to illustrate the benefit of the proposed decomposition algorithms.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 13 ; Year: 2017 ; Issue: 4 ; Pages: 417-426 ; Heidelberg: Springer

Klassifikation
Management
Thema
Markov decision process
Graph theory
Tarjan's algorithm
Strongly connected components
Decomposition

Ereignis
Geistige Schöpfung
(wer)
Larach, Abdelhadi
Chafik, S.
Daoui, C.
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2017

DOI
doi:10.1007/s40092-017-0197-7
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Larach, Abdelhadi
  • Chafik, S.
  • Daoui, C.
  • Springer

Entstanden

  • 2017

Ähnliche Objekte (12)