Arbeitspapier

Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices

Novel periodic extensions of dynamic long memory regression models with autoregressive conditional heteroskedastic errors are considered for the analysis of daily electricity spot prices. The parameters of the model with mean and variance specifications are estimated simultaneously by the method of approximate maximum likelihood. The methods are implemented for time series of 1, 200 to 4, 400 daily price observations. Apart from persistence, heteroskedasticity and extreme observations in prices, a novel empirical finding is the importance of day-of-the-week periodicity in the autocovariance function of electricity spot prices. In particular, daily log prices from the Nord Pool power exchange of Norway are modeled effectively by our framework, which is also extended with explanatory variables. For the daily log prices of three European emerging electricity markets (EEX in Germany, Powernext in France, APX in The Netherlands), which are less persistent, periodicity is also highly significant.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 05-091/4

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
General Financial Markets: General (includes Measurement and Data)
Thema
Autoregressive fractionally integrated moving average model
Generalised autoregressive conditional heteroskedasticity model
Long memory process
Periodic autoregressive model
Volatility
Strompreis
ARCH-Modell
ARMA-Modell
EU-Staaten

Ereignis
Geistige Schöpfung
(wer)
Koopman, Siem Jan
Ooms, Marius
Carnero, M. Angeles
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Koopman, Siem Jan
  • Ooms, Marius
  • Carnero, M. Angeles
  • Tinbergen Institute

Entstanden

  • 2005

Ähnliche Objekte (12)