Arbeitspapier

Restrictions search for panel VARs

As panel vector autoregressive (PVAR) models can include several countries and variables in one system, they are well suited for global spillover analyses. However, PVARs require restrictions to ensure the feasibility of the estimation. The present paper uses a selection prior for a data-based restriction search. It introduces the stochastic search variable selection for PVAR models (SSVSP) as an alternative estimation procedure for PVARs. This extends Koop and Korobilis's stochastic search specification selection (S4) to a restriction search on single elements. The SSVSP allows for incorporating dynamic and static interdependencies as well as cross-country heterogeneities. It uses a hierarchical prior to search for data-supported restrictions. The prior differentiates between domestic and foreign variables, thereby allowing a less restrictive panel structure. Absent a matrix structure for restrictions, a Monte Carlo simulation shows that SSVSP outperforms S4 in terms of deviation from the true values. Furthermore, the results of a forecast exercise for G7 countries demonstrate that forecast performance improves for the SSVSP specifications which focus on sparsity in form of no dynamic interdependencies.

Sprache
Englisch

Erschienen in
Series: DIW Discussion Papers ; No. 1612

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Model Evaluation, Validation, and Selection
Thema
model selection
stochastic search variable selection
PVAR

Ereignis
Geistige Schöpfung
(wer)
Schnücker, Annika
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Schnücker, Annika
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2016

Ähnliche Objekte (12)