Arbeitspapier

Higher order properties of GMM and generalized empirical likelihood estimators

In an effort to improve the small sample properties of generalized method of moments (GMM) estimators, a number of alternative estimators have been suggested. These include empirical likelihood (EL), continuous updating, and exponential tilting estimators. We show that these estimators share a common structure, being members of a class of generalized empirical likelihood (GEL) estimators. We use this structure to compare their higher order asymptotic properties. We find that GEL has no asymptotic bias due to correlation of the moment functions with their Jacobian, eliminating an important source of bias for GMM in models with endogeneity. We also find that EL has no asymptotic bias from estimating the optimal weight matrix, eliminating a further important source of bias for GMM in panel data models. We give bias corrected GMM and GEL estimators. We also show that bias corrected EL inherits the higher order property of maximum likelihood, that it is higher order asymptotically effcient relative to the other bias corrected estimators.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP04/03

Classification
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models; Multiple Variables: General
Subject
GMM , Empirical Likelihood , Bias , Higher Order Efficiency , Stochastic Expansions
Schätztheorie
Theorie
Momentenmethode

Event
Geistige Schöpfung
(who)
Newey, Whitney K.
Smith, Richard J.
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2003

DOI
doi:10.1920/wp.cem.2003.0403
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Newey, Whitney K.
  • Smith, Richard J.
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2003

Other Objects (12)