Three Weak Solutions for Nonlocal Fractional Equations

Abstract: This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Three Weak Solutions for Nonlocal Fractional Equations ; volume:14 ; number:3 ; year:2014 ; pages:619-629 ; extent:11
Advanced nonlinear studies ; 14, Heft 3 (2014), 619-629 (gesamt 11)

Urheber
Bisci, Giovanni Molica
Pansera, Bruno Antonio

DOI
10.1515/ans-2014-0306
URN
urn:nbn:de:101:1-2405031538279.101717566974
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:50 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Bisci, Giovanni Molica
  • Pansera, Bruno Antonio

Ähnliche Objekte (12)