Three Weak Solutions for Nonlocal Fractional Equations

Abstract: This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Three Weak Solutions for Nonlocal Fractional Equations ; volume:14 ; number:3 ; year:2014 ; pages:619-629 ; extent:11
Advanced nonlinear studies ; 14, Heft 3 (2014), 619-629 (gesamt 11)

Creator
Bisci, Giovanni Molica
Pansera, Bruno Antonio

DOI
10.1515/ans-2014-0306
URN
urn:nbn:de:101:1-2405031538279.101717566974
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:50 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bisci, Giovanni Molica
  • Pansera, Bruno Antonio

Other Objects (12)