Three Weak Solutions for Nonlocal Fractional Equations
Abstract: This article concerns a class of nonlocal fractional Laplacian problems depending of three real parameters. More precisely, by using an appropriate analytical context on fractional Sobolev spaces due to Servadei and Valdinoci (in order to correctly encode the Dirichlet boundary datum in the variational formulation of our problem) we establish the existence of three weak solutions for fractional equations via a recent abstract critical point result for differentiable and parametric functionals recently proved by Ricceri.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Three Weak Solutions for Nonlocal Fractional Equations ; volume:14 ; number:3 ; year:2014 ; pages:619-629 ; extent:11
Advanced nonlinear studies ; 14, Heft 3 (2014), 619-629 (gesamt 11)
- Creator
-
Bisci, Giovanni Molica
Pansera, Bruno Antonio
- DOI
-
10.1515/ans-2014-0306
- URN
-
urn:nbn:de:101:1-2405031538279.101717566974
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:50 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bisci, Giovanni Molica
- Pansera, Bruno Antonio