Artikel

A machine learning approach to univariate time series forecasting of quarterly earnings

We propose our quarterly earnings prediction (QEPSVR) model, which is based on epsilon support vector regression (ε-SVR), as a new univariate model for quarterly earnings forecasting. This follows the recommendations of Lorek (Adv Account 30:315–321, 2014. https://doi.org/10.1016/j.adiac.2014.09.008), who notes that although the model developed by Brown and Rozeff (J Account Res 17:179–189, 1979) (BR ARIMA) is advocated as still being the premier univariate model, it may no longer be suitable for describing recent quarterly earnings series. We conduct empirical studies on recent data to compare the predictive accuracy of the QEPSVR model to that of the BR ARIMA model under a multitude of conditions. Our results show that the predictive accuracy of the QEPSVR model significantly exceeds that of the BR ARIMA model under 24 out of the 28 tested experiment conditions. Furthermore, significance is achieved under all conditions considering short forecast horizons or limited availability of historic data. We therefore advocate the use of the QEPSVR model for firms performing short-term operational planning, for recently founded companies and for firms that have restructured their business model.

Sprache
Englisch

Erschienen in
Journal: Review of Quantitative Finance and Accounting ; ISSN: 1573-7179 ; Volume: 55 ; Year: 2020 ; Issue: 4 ; Pages: 1163-1179 ; New York, NY: Springer US

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Thema
Quarterly earnings forecasting
ARIMA models
Support vector regression
Time-series regression
Machine learning

Ereignis
Geistige Schöpfung
(wer)
Fischer, Jan Alexander
Pohl, Philipp
Ratz, Dietmar
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2020

DOI
doi:10.1007/s11156-020-00871-3
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Fischer, Jan Alexander
  • Pohl, Philipp
  • Ratz, Dietmar
  • Springer US

Entstanden

  • 2020

Ähnliche Objekte (12)