Artikel

Three essays on stopping

First, we give a closed-form formula for first passage time of a reflected Brownian motion with drift. This corrects a formula by Perry et al. (2004). Second, we show that the maximum before a fixed drawdown is exponentially distributed for any drawdown, if and only if the diffusion characteristic μ/σ2 is constant. This complements the sufficient condition formulated by Lehoczky (1977). Third, we give an alternative proof for the fact that the maximum before a fixed drawdown is exponentially distributed for any spectrally negative Lévy process, a result due to Mijatovi´c and Pistorius (2012). Our proof is similar, but simpler than Lehoczky (1977) or Landriault et al. (2017).

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 4 ; Pages: 1-10 ; Basel: MDPI

Classification
Wirtschaft
Subject
drawdown
linear diffusions
reflected Brownian motion
spectrally negative Lévy processes

Event
Geistige Schöpfung
(who)
Mayerhofer, Eberhard
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/risks7040105
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Mayerhofer, Eberhard
  • MDPI

Time of origin

  • 2019

Other Objects (12)