Artikel

Global identification of linearized DSGE models

This paper introduces a computational framework to analyze global identification of linearized DSGE models. A formal identification condition is established that relies on the restrictions linking the observationally equivalent state space representations and on the inherent constraints imposed by the model solution on the deep parameters. This condition is next used to develop an algorithm that checks global identification by searching for observationally equivalent model parametrizations. The algorithm is efficient as the identification conditions it employs shrink considerably the space of candidate deep parameter points and the model does not need to be solved at each of these points. The working of the algorithm is demonstrated with two examples.

Language
Englisch

Bibliographic citation
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 9 ; Year: 2018 ; Issue: 3 ; Pages: 1243-1263 ; New Haven, CT: The Econometric Society

Classification
Wirtschaft
Estimation: General
Model Construction and Estimation
Business Fluctuations; Cycles
Subject
Global identification
DSGE models
state-space representation

Event
Geistige Schöpfung
(who)
Kociñecki, Andrzej
Kolasa, Marcin
Event
Veröffentlichung
(who)
The Econometric Society
(where)
New Haven, CT
(when)
2018

DOI
doi:10.3982/QE530
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Kociñecki, Andrzej
  • Kolasa, Marcin
  • The Econometric Society

Time of origin

  • 2018

Other Objects (12)