Artikel

Forecasting using a Nonlinear DSGE Model

A medium-scale nonlinear dynamic stochastic general equilibrium (DSGE) model was estimated (54 variables, 29 state variables, 7 observed variables). The model includes an observed variable for stock market returns. The root-mean square error (RMSE) of the in-sample and out-of-sample forecasts was calculated. The nonlinear DSGE model with measurement errors outperforms AR (1), VAR (1) and the linearised DSGE in terms of the quality of the out-of-sample forecasts. The nonlinear DSGE model without measurement errors is of a quality equal to that of the linearised DSGE model.

Language
Englisch

Bibliographic citation
Journal: Journal of Central Banking Theory and Practice ; ISSN: 2336-9205 ; Volume: 7 ; Year: 2018 ; Issue: 2 ; Pages: 73-98 ; Warsaw: De Gruyter Open

Classification
Wirtschaft
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Financial Markets and the Macroeconomy
Money and Interest Rates: Forecasting and Simulation: Models and Applications
Subject
Nonlinear DSGE
Quadratic Kalman Filter
Out-of-sample forecasts.

Event
Geistige Schöpfung
(who)
Ivashchenko, Sergey
Gupta, Rangan
Event
Veröffentlichung
(who)
De Gruyter Open
(where)
Warsaw
(when)
2018

DOI
doi:10.2478/jcbtp-2018-0013
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Ivashchenko, Sergey
  • Gupta, Rangan
  • De Gruyter Open

Time of origin

  • 2018

Other Objects (12)