Arbeitspapier
Dynamic Partial Correlation Models
We introduce a new, easily scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model's recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model's static parameters. The new model outperforms benchmarks like the t-cDCC and the multivariate t-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to 1980–2021 US stock returns across twelve industries
- Language
-
Englisch
- Bibliographic citation
-
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-070/III
- Classification
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
- Subject
-
Dynamic partial correlations
perturbed stochastic recurrence equations
invertibility
stationarity
- Event
-
Geistige Schöpfung
- (who)
-
D'Innocenzo, Enzo
Lucas, André
- Event
-
Veröffentlichung
- (who)
-
Tinbergen Institute
- (where)
-
Amsterdam and Rotterdam
- (when)
-
2022
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- D'Innocenzo, Enzo
- Lucas, André
- Tinbergen Institute
Time of origin
- 2022