Arbeitspapier

Dynamic Partial Correlation Models

We introduce a new, easily scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model's recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model's static parameters. The new model outperforms benchmarks like the t-cDCC and the multivariate t-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to 1980–2021 US stock returns across twelve industries

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-070/III

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Subject
Dynamic partial correlations
perturbed stochastic recurrence equations
invertibility
stationarity

Event
Geistige Schöpfung
(who)
D'Innocenzo, Enzo
Lucas, André
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2022

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • D'Innocenzo, Enzo
  • Lucas, André
  • Tinbergen Institute

Time of origin

  • 2022

Other Objects (12)