Arbeitspapier

Dynamic Partial Correlation Models

We introduce a new, easily scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model's recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model's static parameters. The new model outperforms benchmarks like the t-cDCC and the multivariate t-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to 1980–2021 US stock returns across twelve industries

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-070/III

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Thema
Dynamic partial correlations
perturbed stochastic recurrence equations
invertibility
stationarity

Ereignis
Geistige Schöpfung
(wer)
D'Innocenzo, Enzo
Lucas, André
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • D'Innocenzo, Enzo
  • Lucas, André
  • Tinbergen Institute

Entstanden

  • 2022

Ähnliche Objekte (12)