Arbeitspapier
Dynamic Partial Correlation Models
We introduce a new, easily scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model's recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity, ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate slices of the data only. From this, we establish consistency and asymptotic normality of the maximum likelihood estimator for the model's static parameters. The new model outperforms benchmarks like the t-cDCC and the multivariate t-GAS, both in simulations and in an in-sample and out-of-sample asset pricing application to 1980–2021 US stock returns across twelve industries
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-070/III
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
- Thema
-
Dynamic partial correlations
perturbed stochastic recurrence equations
invertibility
stationarity
- Ereignis
-
Geistige Schöpfung
- (wer)
-
D'Innocenzo, Enzo
Lucas, André
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2022
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- D'Innocenzo, Enzo
- Lucas, André
- Tinbergen Institute
Entstanden
- 2022