Artikel
A Review of Kernel Density Estimation with Applications to Econometrics
Nonparametric density estimation is of great importance when econometricians want to model the probabilistic or stochastic structure of a data set. This comprehensive review summarizes the most important theoretical aspects of kernel density estimation and provides an extensive description of classical and modern data analytic methods to compute the smoothing parameter. Throughout the text, several references can be found to the most up-to-date and cut point research approaches in this area, while econometric data sets are analyzed as examples. Lastly, we present SIZer, a new approach introduced by Chaudhuri and Marron (2000), whose objective is to analyze the visible features representing important underlying structures for different bandwidths.
- Language
-
Englisch
- Bibliographic citation
-
Journal: International Econometric Review (IER) ; ISSN: 1308-8815 ; Volume: 5 ; Year: 2013 ; Issue: 1 ; Pages: 20-42 ; Ankara: Econometric Research Association (ERA)
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
- Subject
-
Nonparametric Density Estimation
SiZer
Plug-In Bandwidth Selectors
Cross- Validation
Smoothing Parameter
- Event
-
Geistige Schöpfung
- (who)
-
Zambom, Adriano Z.
Dias, Ronaldo
- Event
-
Veröffentlichung
- (who)
-
Econometric Research Association (ERA)
- (where)
-
Ankara
- (when)
-
2013
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Zambom, Adriano Z.
- Dias, Ronaldo
- Econometric Research Association (ERA)
Time of origin
- 2013