Artikel

A Review of Kernel Density Estimation with Applications to Econometrics

Nonparametric density estimation is of great importance when econometricians want to model the probabilistic or stochastic structure of a data set. This comprehensive review summarizes the most important theoretical aspects of kernel density estimation and provides an extensive description of classical and modern data analytic methods to compute the smoothing parameter. Throughout the text, several references can be found to the most up-to-date and cut point research approaches in this area, while econometric data sets are analyzed as examples. Lastly, we present SIZer, a new approach introduced by Chaudhuri and Marron (2000), whose objective is to analyze the visible features representing important underlying structures for different bandwidths.

Language
Englisch

Bibliographic citation
Journal: International Econometric Review (IER) ; ISSN: 1308-8815 ; Volume: 5 ; Year: 2013 ; Issue: 1 ; Pages: 20-42 ; Ankara: Econometric Research Association (ERA)

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Subject
Nonparametric Density Estimation
SiZer
Plug-In Bandwidth Selectors
Cross- Validation
Smoothing Parameter

Event
Geistige Schöpfung
(who)
Zambom, Adriano Z.
Dias, Ronaldo
Event
Veröffentlichung
(who)
Econometric Research Association (ERA)
(where)
Ankara
(when)
2013

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Zambom, Adriano Z.
  • Dias, Ronaldo
  • Econometric Research Association (ERA)

Time of origin

  • 2013

Other Objects (12)