Non-stationary Navier–Stokes equations in 2 D power cusp domain : I. Construction of the formal asymptotic decomposition
Abstract: The initial boundary value problem for the non-stationary Navier-Stokes equations is studied in 2D bounded domain with a power cusp singular point O on the boundary. The case of the boundary value with a nonzero flow rate is considered. In this case there is a source/sink in O and the solution necessary has infinite energy integral. In the first part of the paper the formal asymptotic expansion of the solution near the singular point is constructed. The justification of the asymptotic expansion and the existence of a solution are proved in the second part of the paper.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Non-stationary Navier–Stokes equations in 2 D power cusp domain ; volume:10 ; number:1 ; year:2021 ; pages:982-1010 ; extent:29
Advances in nonlinear analysis ; 10, Heft 1 (2021), 982-1010 (gesamt 29)
- Creator
-
Pileckas, Konstantin
Raciene, Alicija
- DOI
-
10.1515/anona-2020-0164
- URN
-
urn:nbn:de:101:1-2405021618521.667449691951
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:45 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Pileckas, Konstantin
- Raciene, Alicija