Arbeitspapier

Nowcasting del PIB de México usando modelos de factores y ecuaciones puente

This paper evaluates five Nowcasting models that forecast Mexico's quarterly GDP: a Dynamic Factor Model (MFD), two Bridge Equation Models (BE) and two Principal Components Models (PCA). The results indicate that the average of the BE forecasts is statistically better than the rest of the models under consideration, according to the Diebold-Mariano (1995) accuracy test. In addition, using real-time information, the BE average is found to be more accurate than the median of the forecasts provided by the analysts surveyed by Bloomberg and the median of the experts who answer Banco de México's Survey of Professional Forecasters.

Language
Spanisch

Bibliographic citation
Series: Working Papers ; No. 2018-06

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Monetary Policy
Subject
Nowcasting
Dynamic Factor Model
Bridge Equations
Principal Component Analysis
Quarterly GDP
Diebold-Mariano test

Event
Geistige Schöpfung
(who)
Gálvez-Soriano, Oscar de Jésus
Event
Veröffentlichung
(who)
Banco de México
(where)
Ciudad de México
(when)
2018

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Gálvez-Soriano, Oscar de Jésus
  • Banco de México

Time of origin

  • 2018

Other Objects (12)