Arbeitspapier
Nowcasting del PIB de México usando modelos de factores y ecuaciones puente
This paper evaluates five Nowcasting models that forecast Mexico's quarterly GDP: a Dynamic Factor Model (MFD), two Bridge Equation Models (BE) and two Principal Components Models (PCA). The results indicate that the average of the BE forecasts is statistically better than the rest of the models under consideration, according to the Diebold-Mariano (1995) accuracy test. In addition, using real-time information, the BE average is found to be more accurate than the median of the forecasts provided by the analysts surveyed by Bloomberg and the median of the experts who answer Banco de México's Survey of Professional Forecasters.
- Language
-
Spanisch
- Bibliographic citation
-
Series: Working Papers ; No. 2018-06
- Classification
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Monetary Policy
- Subject
-
Nowcasting
Dynamic Factor Model
Bridge Equations
Principal Component Analysis
Quarterly GDP
Diebold-Mariano test
- Event
-
Geistige Schöpfung
- (who)
-
Gálvez-Soriano, Oscar de Jésus
- Event
-
Veröffentlichung
- (who)
-
Banco de México
- (where)
-
Ciudad de México
- (when)
-
2018
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Gálvez-Soriano, Oscar de Jésus
- Banco de México
Time of origin
- 2018