Artikel

Generalized spatialt two stage least squares estimation of spatial autoregressive models with autoregressive disturbances in the presence of endogenous regressors and many instruments

This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE) that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 1 ; Year: 2013 ; Issue: 1 ; Pages: 71-114 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
spatial autoregressive
spatial error
2SLS
endogenous regressor
instrumental variable selection

Ereignis
Geistige Schöpfung
(wer)
Jin, Fei
Lee, Lung-fei
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2013

DOI
doi:10.3390/econometrics1010071
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Jin, Fei
  • Lee, Lung-fei
  • MDPI

Entstanden

  • 2013

Ähnliche Objekte (12)