Artikel

Generalized spatialt two stage least squares estimation of spatial autoregressive models with autoregressive disturbances in the presence of endogenous regressors and many instruments

This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE) that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 1 ; Year: 2013 ; Issue: 1 ; Pages: 71-114 ; Basel: MDPI

Classification
Wirtschaft
Subject
spatial autoregressive
spatial error
2SLS
endogenous regressor
instrumental variable selection

Event
Geistige Schöpfung
(who)
Jin, Fei
Lee, Lung-fei
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2013

DOI
doi:10.3390/econometrics1010071
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Jin, Fei
  • Lee, Lung-fei
  • MDPI

Time of origin

  • 2013

Other Objects (12)