Site‐Selective Modification of Peptides and Proteins via Interception of Free‐Radical‐Mediated Dechalcogenation

Abstract: The development of site‐selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to advance therapeutics, diagnostics, and fundamental science. We report a versatile and selective method to functionalize peptides and proteins through free‐radical‐mediated dechalcogenation. By exploiting phosphine‐induced homolysis of the C−Se and C−S bonds of selenocysteine and cysteine, respectively, we demonstrate the site‐selective installation of groups appended to a persistent radical trap. The reaction is rapid, operationally simple, and chemoselective. The resulting aminooxy linker is stable under a variety of conditions and selectively cleavable in the presence of a low‐oxidation‐state transition metal. We have explored the full scope of this reaction using complex peptide systems and a recombinantly expressed protein.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Site‐Selective Modification of Peptides and Proteins via Interception of Free‐Radical‐Mediated Dechalcogenation ; volume:132 ; number:52 ; year:2020 ; pages:23867-23875 ; extent:9
Angewandte Chemie ; 132, Heft 52 (2020), 23867-23875 (gesamt 9)

Creator
Griffiths, Rhys C.
Smith, Frances R.
Long, Jed E.
Williams, Huw E. L.
Layfield, Robert
Mitchell, Nicholas J.

DOI
10.1002/ange.202006260
URN
urn:nbn:de:101:1-2022052812480253930821
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Griffiths, Rhys C.
  • Smith, Frances R.
  • Long, Jed E.
  • Williams, Huw E. L.
  • Layfield, Robert
  • Mitchell, Nicholas J.

Other Objects (12)