Arbeitspapier

Instrumental variable estimation with heteroskedasticity and many instruments

It is common practice in econometrics to correct for heteroskedasticity.This paper corrects instrumental variables estimators with many instruments for heteroskedasticity.We give heteroskedasticity robust versions of the limited information maximum likelihood (LIML) and Fuller (1977, FULL) estimators; as well as heteroskedasticity consistent standard errors thereof. The estimators are based on removing the own observation terms in the numerator of the LIML variance ratio. We derive asymptotic properties of the estimators under many and many weak instruments setups. Based on a series of Monte Carlo experiments, we find that the estimators perform as well as LIML or FULL under homoskedasticity, and have much lower bias and dispersion under heteroskedasticity, in nearly all cases considered.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP22/07

Klassifikation
Wirtschaft
Hypothesis Testing: General
Estimation: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Thema
Instrumental Variables , Heteroskedasticity , Many Instruments , Jackknife
Instrumentalvariablen-Schätzmethode
Heteroskedastizität
Monte-Carlo-Methode
Resampling
Theorie

Ereignis
Geistige Schöpfung
(wer)
Hausman, Jerry
Newey, Whitney
Chao, John
Swanson, Norman
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2007

DOI
doi:10.1920/wp.cem.2007.2207
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hausman, Jerry
  • Newey, Whitney
  • Chao, John
  • Swanson, Norman
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2007

Ähnliche Objekte (12)