Artikel

A combination method for averaging OLS and GLS estimators

To avoid the risk of misspecification between homoscedastic and heteroscedastic models, we propose a combination method based on ordinary least-squares (OLS) and generalized least-squares (GLS) model-averaging estimators. To select optimal weights for the combination, we suggest two information criteria and propose feasible versions that work even when the variance-covariance matrix is unknown. The optimality of the method is proven under some regularity conditions. The results of a Monte Carlo simulation demonstrate that the method is adaptive in the sense that it achieves almost the same estimation accuracy as if the homoscedasticity or heteroscedasticity of the error term were known.

Language
Englisch

Bibliographic citation
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 7 ; Year: 2019 ; Issue: 3 ; Pages: 1-12 ; Basel: MDPI

Classification
Wirtschaft
Subject
combination method
GLS
model averaging
OLS

Event
Geistige Schöpfung
(who)
Liu, Qingfeng
Vasnev, Andrey L.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/econometrics7030038
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Liu, Qingfeng
  • Vasnev, Andrey L.
  • MDPI

Time of origin

  • 2019

Other Objects (12)