Artikel
A new family of consistent and asymptotically-normal estimators for the extremal index
The extremal index (O) is the key parameter for extending extreme value theory results from i.i.d. to stationary sequences. One important property of this parameter is that its inverse determines the degree of clustering in the extremes. This article introduces a novel interpretation of the extremal index as a limiting probability characterized by two Poisson processes and a simple family of estimators derived from this new characterization. Unlike most estimators for O in the literature, this estimator is consistent, asymptotically normal and very stable across partitions of the sample. Further, we show in an extensive simulation study that this estimator outperforms in finite samples the logs, blocks and runs estimation methods. Finally, we apply this new estimator to test for clustering of extremes in monthly time series of unemployment growth and inflation rates and conclude that runs of large unemployment rates are more prolonged than periods of high inflation.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 3 ; Year: 2015 ; Issue: 3 ; Pages: 633-653 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Methodological Issues: General
- Thema
-
asymptotic theory
clustering of extremes
extremal index
extreme value theory
order statistics
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Olmo, Jose
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2015
- DOI
-
doi:10.3390/econometrics3030633
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Olmo, Jose
- MDPI
Entstanden
- 2015