Arbeitspapier

Conditional Quantile Estimators: A Small Sample Theory

We study the small sample properties of conditional quantile estimators such as classical and IV quantile regression. First, we propose a higher-order analytical framework for comparing competing estimators in small samples and assessing the accuracy of common inference procedures. Our framework is based on a novel approximation of the discontinuous sample moments by a Hölder-continuous process with a negligible error. For any consistent estimator, this approximation leads to asymptotic linear expansions with nearly optimal rates. Second, we study the higher-order bias of exact quantile estimators up to O (1/n). Using a novel non-smooth calculus technique, we uncover previously unknown non-negligible bias components that cannot be consistently estimated and depend on the employed estimation algorithm. To circumvent this problem, we propose a “symmetric” bias correction, which admits a feasible implementation. Our simulations confirm the empirical importance of bias correction.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 9046

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Thema
non-smooth estimators
KMT coupling
Hungarian construction
higher-order asymptotic distribution
higher-order stochastic expansion
order statistic
bias correction
mixed integer linear programming (MILP)
exact estimators
k-step estimators
quantile

Ereignis
Geistige Schöpfung
(wer)
Franguridi, Grigory
Gafarov, Bulat
Wüthrich, Kaspar
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and Ifo Institute (CESifo)
(wo)
Munich
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Franguridi, Grigory
  • Gafarov, Bulat
  • Wüthrich, Kaspar
  • Center for Economic Studies and Ifo Institute (CESifo)

Entstanden

  • 2021

Ähnliche Objekte (12)