Arbeitspapier

Estimation and inference for varying-coeffcient models with nonstationary regressors using penalized splines

This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing the mixed model representation of penalized splines, we develop a likelihood ratio test statistic for checking the stability of the regression coefficients. We derive both the exact and the asymptotic null distributions of this test statistic. We also demonstrate its optimality by examining its local power performance. These theoretical fundings are well supported by simulation studies.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2013-033

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
Nonstationary Time Series
Varying-coefficient Model
Likelihood Ratio Test
Penalized Splines

Ereignis
Geistige Schöpfung
(wer)
Chen, Haiqiang
Fang, Ying
Li, Yingxing
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Haiqiang
  • Fang, Ying
  • Li, Yingxing
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2013

Ähnliche Objekte (12)