Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework
Abstract: Calibration is a highly challenging task, in particular in multiple yield curve markets. This paper is a first attempt to study the chances and challenges of the application of machine learning techniques for this. We employ Gaussian process regression, a machine learning methodology having many similarities with extended Kálmán filtering, which has been applied many times to interest rate markets and term structure models. We find very good results for the single-curve markets and many challenges for the multi-curve markets in a Vasiček framework. The Gaussian process regression is implemented with the Adam optimizer and the non-linear conjugate gradient method, where the latter performs best. We also point towards future research
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Risks. - 8, 2 (2020) , 50, ISSN: 2227-909
- Klassifikation
-
Wirtschaft
- Schlagwort
-
Maschinelles Lernen
Gauß-Prozess
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2020
- Urheber
- DOI
-
10.3390/risks8020050
- URN
-
urn:nbn:de:bsz:25-freidok-1663690
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:55 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Gümbel, Sandrine
- Schmidt, Thorsten
- Universität
Entstanden
- 2020