Performance of ChatGPT, human radiologists, and context-aware ChatGPT in identifying AO codes from radiology reports

Abstract: While radiologists can describe a fracture’s morphology and complexity with ease, the translation into classification systems such as the Arbeitsgemeinschaft Osteosynthesefragen (AO) Fracture and Dislocation Classification Compendium is more challenging. We tested the performance of generic chatbots and chatbots aware of specific knowledge of the AO classification provided by a vector-index and compared it to human readers. In the 100 radiological reports we created based on random AO codes, chatbots provided AO codes significantly faster than humans (mean 3.2 s per case vs. 50 s per case, p < .001) though not reaching human performance (max. chatbot performance of 86% correct full AO codes vs. 95% in human readers). In general, chatbots based on GPT 4 outperformed the ones based on GPT 3.5-Turbo. Further, we found that providing specific knowledge substantially enhances the chatbot’s performance and consistency as the context-aware chatbot based on GPT 4 provided 71% consistent correct full AO codes for the compared to the 2% consistent correct full AO codes for the generic ChatGPT 4. This provides evidence, that refining and providing specific context to ChatGPT will be the next essential step in harnessing its power

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Scientific reports. - 13, 1 (2023) , 14215, ISSN: 2045-2322

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023

DOI
10.1038/s41598-023-41512-8
URN
urn:nbn:de:bsz:25-freidok-2389479
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)