Arbeitspapier

The stable roommates problem with short lists

We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists (SRI) that are degree constrained, i.e., preference lists are of bounded length. The first variant, egal d-SRI, involves finding an egalitarian stable matching in solvable instances of SRI with preference lists of length at most d. We show that this problem is NP-hard even if d = 3. On the positive side we give a 2d+3 / 7-approximation algorithm for d {3, 4, 5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of SRI, called d-SRTI, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-SRTI admits a stable matching is NP-complete even if d = 3. We also consider the "most stable" version of this problem and prove a strong inapproximability bound for the d = 3 case. However for d = 2 we show that the latter problem can be solved in polynomial time.

ISBN
978-615-5457-16-6
Sprache
Englisch

Erschienen in
Series: IEHAS Discussion Papers ; No. MT-DP - 2017/26

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
Thema
stable matching
bounded length preference lists
complexity
approximation algorithm

Ereignis
Geistige Schöpfung
(wer)
Cseh, Ágnes
Irving, Robert W.
Manlove, David F.
Ereignis
Veröffentlichung
(wer)
Hungarian Academy of Sciences, Institute of Economics
(wo)
Budapest
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cseh, Ágnes
  • Irving, Robert W.
  • Manlove, David F.
  • Hungarian Academy of Sciences, Institute of Economics

Entstanden

  • 2017

Ähnliche Objekte (12)