Arbeitspapier

Macroeconomic Forecast Accuracy in a Data-Rich Environment

We compare the performance of six classes of models at forecasting di↵erent types of economic series in an extensive pseudo out-of-sample exercise. Our findings can be summarized in a few points: (i) Regularized Data-Rich Model Averaging techniques are hard to beat in general and are the best to forecast real variables. Simulations results show that this robust performance is attributable to the combination of sparsity/regularization with model averaging. (ii) The ARMA(1,1) model emerges as the best to forecast inflation growth, except during recessions. (iii) SP500 returns are predictable by data-rich models and model averaging techniques, especially during recessions. Also, factor models have significant predictive power for the signs of future returns. (iv) The cross-sectional dispersion of out-of-sample point forecasts is a good predictor of macroeconomic uncertainty. (v) The forecast accuracy and the optimal structure of forecasting equations are quite unstable over time.

Sprache
Englisch

Erschienen in
Series: Document de travail ; No. 2017-02

Klassifikation
Wirtschaft
Large Data Sets: Modeling and Analysis
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
General Aggregative Models: Forecasting and Simulation: Models and Applications
Thema
Data-Rich Models
Factor Models
Forecasting
Model Averaging
Sparse Models
Regularization

Ereignis
Geistige Schöpfung
(wer)
Kotchoni, Rachidi
Leroux, Maxime
Stevanovic, Dalibor
Ereignis
Veröffentlichung
(wer)
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
(wo)
Montréal
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kotchoni, Rachidi
  • Leroux, Maxime
  • Stevanovic, Dalibor
  • Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques

Entstanden

  • 2017

Ähnliche Objekte (12)