Exploring SSD Detector for Power Line Insulator Detection on Edge Platform

Abstract: Power line insulator detection is pivotal for the consistent performance of the entire power system. It forms the basis of Unmanned Aerial Vehicle (UAV) inspection, an emerging trend in power line surveillance. This paper addresses the challenge of insulator detection in cluttered aerial images, given the constraints of a limited dataset and lower computational resources, specifically on the NVIDIA Jetson Nano platform. We have developed two approaches based on active and passive deep learning algorithms, underpinned by the Single Shot Multibox Detector (SSD) meta-architecture with MobileNetV2 as its backbone - SSD300 and SSD640. The proposal models managed a frame rate of 9 fps in 10W power mode and 5.6 fps in 5W power mode. Our experiments demonstrated that the proposed active learning model could conduct robust insulator detection, achieving a mAP of 94.5% while using only 43% of the total dataset, comparable to the traditional deep learning approach's 94.6% mAP using the entire.... https://www.bibliothek.tu-chemnitz.de/ojs/index.php/cs/article/view/603

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Exploring SSD Detector for Power Line Insulator Detection on Edge Platform ; volume:10 ; number:5 ; day:07 ; month:11 ; year:2023
Embedded selforganising systems ; 10, Heft 5 (07.11.2023)

Urheber
Harras, Mohamed Salim
Soaibuzzaman
Saleh, Shadi
Hardt, Wolfram

DOI
10.14464/ess.v10i5.603
URN
urn:nbn:de:101:1-2024030618451368254577
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:49 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Harras, Mohamed Salim
  • Soaibuzzaman
  • Saleh, Shadi
  • Hardt, Wolfram

Ähnliche Objekte (12)