Exploring SSD Detector for Power Line Insulator Detection on Edge Platform
Abstract: Power line insulator detection is pivotal for the consistent performance of the entire power system. It forms the basis of Unmanned Aerial Vehicle (UAV) inspection, an emerging trend in power line surveillance. This paper addresses the challenge of insulator detection in cluttered aerial images, given the constraints of a limited dataset and lower computational resources, specifically on the NVIDIA Jetson Nano platform. We have developed two approaches based on active and passive deep learning algorithms, underpinned by the Single Shot Multibox Detector (SSD) meta-architecture with MobileNetV2 as its backbone - SSD300 and SSD640. The proposal models managed a frame rate of 9 fps in 10W power mode and 5.6 fps in 5W power mode. Our experiments demonstrated that the proposed active learning model could conduct robust insulator detection, achieving a mAP of 94.5% while using only 43% of the total dataset, comparable to the traditional deep learning approach's 94.6% mAP using the entire.... https://www.bibliothek.tu-chemnitz.de/ojs/index.php/cs/article/view/603
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Exploring SSD Detector for Power Line Insulator Detection on Edge Platform ; volume:10 ; number:5 ; day:07 ; month:11 ; year:2023
Embedded selforganising systems ; 10, Heft 5 (07.11.2023)
- Creator
-
Harras, Mohamed Salim
Soaibuzzaman
Saleh, Shadi
Hardt, Wolfram
- DOI
-
10.14464/ess.v10i5.603
- URN
-
urn:nbn:de:101:1-2024030618451368254577
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:49 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Harras, Mohamed Salim
- Soaibuzzaman
- Saleh, Shadi
- Hardt, Wolfram