Trajectory Planning for Multiple Autonomous Vehicles at Short‐Distance Tandem Signalized Intersections Based on Rule‐Free Framework
High‐level autonomous vehicles (AVs) have more possibilities for improving traffic efficiency. The improvement of traffic efficiency for mixed flow at near‐saturated short‐distance tandem signalized intersections (STSI) needs attention. Most of the existing studies design a generalized control rule for AVs, ignoring the heterogeneity among different AVs. Herein, a multivehicle trajectory planning framework based on a multiagent reinforcement learning (MRL) algorithm is designed to heuristically explore the optimal traffic efficiency of mixed flow at STSI. The core algorithm of this framework is improved from the classical MRL algorithm multi‐agent proximal policy optimization based on the idea of the virtual group instead of designing control rules. The trajectories planned by the framework show outstanding performance in improving throughputs and reducing emissions at the global system level, comparing natural driving, classic adaptive cruise control model and cooperative adaptive cruise control model. The framework can be used to explore optimal traffic efficiency for mixed flow and better heterogeneous rules for high‐level AVs.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Trajectory Planning for Multiple Autonomous Vehicles at Short‐Distance Tandem Signalized Intersections Based on Rule‐Free Framework ; day:26 ; month:05 ; year:2024 ; extent:16
Advanced intelligent systems ; (26.05.2024) (gesamt 16)
- Urheber
-
Lin, Wenfeng
Hu, Xiaowei
Wang, Jian
- DOI
-
10.1002/aisy.202300692
- URN
-
urn:nbn:de:101:1-2405271405245.621075052939
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:54 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Lin, Wenfeng
- Hu, Xiaowei
- Wang, Jian