Study of the lithium storage mechanism of N‐n-doped carbo Cu2S electrodes for lithium‐ion batteries

Abstract: Owing to their high specific capacity and abundant reserve, CuxS compounds are promising electrode materials for lithium-ion batteries (LIBs). Carbon compositing could stabilize the CuxS structure and repress capacity fading during the electrochemical cycling, but the corresponding Li+ storage mechanism and stabilization effect should be further clarified. In this study, nanoscale Cu2S was synthesized by CuS co-precipitation and thermal reduction with polyelectrolytes. High-temperature synchrotron radiation diffraction was used to monitor the thermal reduction process. During the first cycle, the conversion mechanism upon lithium storage in the Cu2S/carbon was elucidated by operando synchrotron radiation diffraction and in situ X-ray absorption spectroscopy. The N-doped carbon-composited Cu2S (Cu2S/C) exhibits an initial discharge capacity of 425 mAh g−1 at 0.1 A g−1, with a higher, long-term capacity of 523 mAh g−1 at 0.1 A g−1 after 200 cycles; in contrast, the bare CuS electrode exhibits 123 mAh g−1 after 200 cycles. Multiple-scan cyclic voltammetry proves that extra Li+ storage can mainly be ascribed to the contribution of the capacitive storage

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
ISSN: 1521-3765

Klassifikation
Chemie

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Tian, Guiying
Huang, Chuanfeng
Luo, Xianlin
Zhao, Zijian
Peng, Yong
Gao, Yuqin
Tang, Na
Dsoke, Sonia

DOI
10.1002/chem.202101818
URN
urn:nbn:de:bsz:25-freidok-2438393
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:54 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Tian, Guiying
  • Huang, Chuanfeng
  • Luo, Xianlin
  • Zhao, Zijian
  • Peng, Yong
  • Gao, Yuqin
  • Tang, Na
  • Dsoke, Sonia
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)