Arbeitspapier

On the configuration spaces of grassmannian manifolds

Let Fi h(k, n) be the ith ordered configuration space of all distinct points H1, . . . ,Hh in the Grassmannian Gr(k, n) of k-dimensional sub-spaces of Cn, whose sum is a subspace of dimension i. We prove that Fi h(k, n) is (when non empty) a complex submanifold of Gr(k, n)h of dimension i(n - i) + hk(i - k) and its fundamental group is trivial if i = min(n, hk), hk /= n and n > 2 and equal to the braid group of the sphere CP1 if n = 2. Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1.

Language
Englisch

Bibliographic citation
Series: LEM Working Paper Series ; No. 2012/19

Classification
Wirtschaft
Subject
complex space
configuration spaces
braid groups

Event
Geistige Schöpfung
(who)
Manfredini, Sandro
Settepanella, Simona
Event
Veröffentlichung
(who)
Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)
(where)
Pisa
(when)
2012

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Manfredini, Sandro
  • Settepanella, Simona
  • Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)

Time of origin

  • 2012

Other Objects (12)