Arbeitspapier
On the configuration spaces of grassmannian manifolds
Let Fi h(k, n) be the ith ordered configuration space of all distinct points H1, . . . ,Hh in the Grassmannian Gr(k, n) of k-dimensional sub-spaces of Cn, whose sum is a subspace of dimension i. We prove that Fi h(k, n) is (when non empty) a complex submanifold of Gr(k, n)h of dimension i(n - i) + hk(i - k) and its fundamental group is trivial if i = min(n, hk), hk /= n and n > 2 and equal to the braid group of the sphere CP1 if n = 2. Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1.
- Language
-
Englisch
- Bibliographic citation
-
Series: LEM Working Paper Series ; No. 2012/19
- Classification
-
Wirtschaft
- Subject
-
complex space
configuration spaces
braid groups
- Event
-
Geistige Schöpfung
- (who)
-
Manfredini, Sandro
Settepanella, Simona
- Event
-
Veröffentlichung
- (who)
-
Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)
- (where)
-
Pisa
- (when)
-
2012
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Manfredini, Sandro
- Settepanella, Simona
- Scuola Superiore Sant'Anna, Laboratory of Economics and Management (LEM)
Time of origin
- 2012