Arbeitspapier

Information-Theoretic Time-Varying Density Modeling

We present a comprehensive framework for constructing dynamic density models by combining optimization with concepts from information theory. Specifically, we propose to recursively update a time-varying conditional density by maximizing the log-likelihood contribution of the latest observation subject to a Kullback-Leibler divergence (KLD) regularization centered at the one-step ahead predicted density. The resulting Relative Entropy Adaptive Density (READY) update has attractive optimality properties, is reparametrization invariant and can be viewed as an intuitive regularized estimator of the pseudo-true density. Popular existing models, such as the ARMA(1,1) and GARCH(1,1), can be retrieved as special cases. Furthermore, we show that standard score-driven models with inverse Fisher scaling can be derived as convenient local approximations of the READY update. Empirical usefulness is illustrated by the modeling of employment growth and asset volatility.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2023-037/III

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
van Os, Bram
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • van Os, Bram
  • Tinbergen Institute

Entstanden

  • 2023

Ähnliche Objekte (12)