Analysis of the sports action recognition model based on the LSTM recurrent neural network

Abstract: With the rapid growth of motion data, the traditional motion recognition algorithm is faced with the problem of insufficient processing ability. To solve this problem, a method based on gradient descent optimization (GDO)–long short-term memory (LSTM) is proposed to meet the needs of sports action recognition. Based on the experiment of sports data set of students in Hainan University, the experiments of skipping rope, swimming, skating, and shotput were carried out extensively. The total number of experiments were 77, 94, 72, and 85. The experimental results show that the accuracies of GDO-LSTM in sports action recognition were 98.7, 100, 100, and 94.1%, respectively, which was superior to that of the three-axis gyroscope (80.5, 40.4, 23.6, and 100%). These results show that the algorithm can effectively improve the accuracy of sports action recognition and has wide application potential.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Analysis of the sports action recognition model based on the LSTM recurrent neural network ; volume:14 ; number:1 ; year:2025 ; extent:11
Nonlinear engineering ; 14, Heft 1 (2025) (gesamt 11)

Urheber
Chen, Ping
Peng, Jiangui

DOI
10.1515/nleng-2024-0050
URN
urn:nbn:de:101:1-2502260523018.013731920428
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:35 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chen, Ping
  • Peng, Jiangui

Ähnliche Objekte (12)