Arbeitspapier

Cointegration analysis with mixed-frequency data

We develop a method for directly modeling cointegrated multivariate time series that are observed in mixed frequencies. We regard lower-frequency data as regularly (or irregularly) missing and treat them with higher-frequency data by adopting a state-space model. This utilizes the structure of multivariate data as well as the available sample information more fully than the methods of transformation to a single frequency, and enables us to estimate parameters including cointegrating vectors and the missing observations of low-frequency data and to construct forecasts for future values. For the maximum likelihood estimation of the parameters in the model, we use an expectation maximization algorithm based on the state-space representation of the error correction model. The statistical efficiency of the developed method is investigated through a Monte Carlo study. We apply the method to a mixed-frequency data set that consists of the quarterly real gross domestic product and the monthly consumer price index.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 1939

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
missing data
Kalman filter
expectation maximization algorithm
forecasting
error correction model
smoothing
maximum likelihood estimation
Kointegration
Zeitreihenanalyse
Zustandsraummodell
Prognoseverfahren
Fehlerkorrekturmodell
Theorie
Schätzung
Sozialprodukt
Lebenshaltungsindex
USA

Ereignis
Geistige Schöpfung
(wer)
Seong, Byeongchan
Ahn, Sung K.
Zadrozny, Peter A.
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Seong, Byeongchan
  • Ahn, Sung K.
  • Zadrozny, Peter A.
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2007

Ähnliche Objekte (12)