Arbeitspapier
Cointegration analysis with mixed-frequency data
We develop a method for directly modeling cointegrated multivariate time series that are observed in mixed frequencies. We regard lower-frequency data as regularly (or irregularly) missing and treat them with higher-frequency data by adopting a state-space model. This utilizes the structure of multivariate data as well as the available sample information more fully than the methods of transformation to a single frequency, and enables us to estimate parameters including cointegrating vectors and the missing observations of low-frequency data and to construct forecasts for future values. For the maximum likelihood estimation of the parameters in the model, we use an expectation maximization algorithm based on the state-space representation of the error correction model. The statistical efficiency of the developed method is investigated through a Monte Carlo study. We apply the method to a mixed-frequency data set that consists of the quarterly real gross domestic product and the monthly consumer price index.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 1939
- Klassifikation
-
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
missing data
Kalman filter
expectation maximization algorithm
forecasting
error correction model
smoothing
maximum likelihood estimation
Kointegration
Zeitreihenanalyse
Zustandsraummodell
Prognoseverfahren
Fehlerkorrekturmodell
Theorie
Schätzung
Sozialprodukt
Lebenshaltungsindex
USA
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Seong, Byeongchan
Ahn, Sung K.
Zadrozny, Peter A.
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2007
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Seong, Byeongchan
- Ahn, Sung K.
- Zadrozny, Peter A.
- Center for Economic Studies and ifo Institute (CESifo)
Entstanden
- 2007