Arbeitspapier
Mixed Frequency Structural Models: Estimation, and Policy Analysis
In this paper we show analytically, with simulation experiments and with actual data that a mismatch between the time scale of a DSGE model and that of the time series data used for its estimation generally creates identfication problems, introduces estimation bias and distorts the results of policy analysis. On the constructive side, we prove that the use of mixed frequency data, combined with a proper estimation approach, can alleviate the temporal aggregation bias, mitigate the identfication issues, and yield more reliable policy conclusions. The problems and possible remedy are illustrated in the context of standard structural monetary policy models.
- ISBN
-
978-82-7553-760-5
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 2013/15
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Index Numbers and Aggregation; Leading indicators
Business Fluctuations; Cycles
- Thema
-
DSGE models
structural VAR
temporal aggregation
mixed frequency data
identification
estimation
policy analysis
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Foroni, Claudia
Marcellino, Massimiliano
- Ereignis
-
Veröffentlichung
- (wer)
-
Norges Bank
- (wo)
-
Oslo
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Foroni, Claudia
- Marcellino, Massimiliano
- Norges Bank
Entstanden
- 2013