Artikel

Time-varying window length for correlation forecasts

Forecasting correlations between stocks and commodities is important for diversification across asset classes and other risk management decisions. Correlation forecasts are affected by model uncertainty, the sources of which can include uncertainty about changing fundamentals and associated parameters (model instability), structural breaks and nonlinearities due, for example, to regime switching. We use approaches that weight historical data according to their predictive content. Specifically, we estimate two alternative models, 'time-varying weights' and 'time-varying window', in order to maximize the value of past data for forecasting. Our empirical analyses reveal that these approaches provide superior forecasts to several benchmark models for forecasting correlations.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 5 ; Year: 2017 ; Issue: 4 ; Pages: 1-29 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
model uncertainty
variance and correlation forecasts
time-varying window length

Ereignis
Geistige Schöpfung
(wer)
Jeon, Yoontae
McCurdy, Thomas H.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2017

DOI
doi:10.3390/econometrics5040054
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Jeon, Yoontae
  • McCurdy, Thomas H.
  • MDPI

Entstanden

  • 2017

Ähnliche Objekte (12)