Arbeitspapier
Prediction of notes from vocal time series produced by singing voice
Aiming at optimal prediction of the correct note corresponding to a vocal time series we trained a classification algorithm on the basis of parts of interpretations of Tochter Zion (Händel) and tested the algorithm on the remaining parts. As classification algorithm we use a radial basis function support vector machine together with a "Hidden Markov" method as a dynamisation mechanism and some smoothing for categorical data. With this we were able to obtain a minimum of 5% average classification error and a maximum of 26% on data from an experiment with 16 singers.
- Language
-
Englisch
- Bibliographic citation
-
Series: Technical Report ; No. 2003,01
- Event
-
Geistige Schöpfung
- (who)
-
Garczarek, Ursula
Weihs, Claus
Ligges, Uwe
- Event
-
Veröffentlichung
- (who)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (where)
-
Dortmund
- (when)
-
2003
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Garczarek, Ursula
- Weihs, Claus
- Ligges, Uwe
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Time of origin
- 2003