Identification and classification of upper limb motions using PCA

This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Identification and classification of upper limb motions using PCA ; volume:63 ; number:2 ; year:2018 ; pages:191-196 ; extent:6
Biomedical engineering ; 63, Heft 2 (2018), 191-196 (gesamt 6)

Creator
Veer, Karan
Vig, Renu

DOI
10.1515/bmt-2016-0224
URN
urn:nbn:de:101:1-2409261910221.314219600818
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Veer, Karan
  • Vig, Renu

Other Objects (12)