Identification and classification of upper limb motions using PCA

This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Identification and classification of upper limb motions using PCA ; volume:63 ; number:2 ; year:2018 ; pages:191-196 ; extent:6
Biomedical engineering ; 63, Heft 2 (2018), 191-196 (gesamt 6)

Urheber
Veer, Karan
Vig, Renu

DOI
10.1515/bmt-2016-0224
URN
urn:nbn:de:101:1-2409261910221.314219600818
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Veer, Karan
  • Vig, Renu

Ähnliche Objekte (12)