Artikel

Dynamic pricing under competition using reinforcement learning

Dynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems. In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models. We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain conditions, RL algorithms can be forced into collusion by their competitors without direct communication.

Sprache
Englisch

Erschienen in
Journal: Journal of Revenue and Pricing Management ; ISSN: 1477-657X ; Volume: 21 ; Year: 2021 ; Issue: 1 ; Pages: 50-63 ; London: Palgrave Macmillan UK

Klassifikation
Wirtschaft
Thema
Dynamic pricing
Competition
Reinforcement learning
E-commerce
Price collusion

Ereignis
Geistige Schöpfung
(wer)
Kastius, Alexander
Schlosser, Rainer
Ereignis
Veröffentlichung
(wer)
Palgrave Macmillan UK
(wo)
London
(wann)
2021

DOI
doi:10.1057/s41272-021-00285-3
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kastius, Alexander
  • Schlosser, Rainer
  • Palgrave Macmillan UK

Entstanden

  • 2021

Ähnliche Objekte (12)