Arbeitspapier

Estimating the Euro Area output gap using multivariate information and addressing the COVID-19 pandemic

We estimate the euro area output gap by applying the Beveridge-Nelson decomposition based on a large Bayesian vector autoregression. Our approach incorporates multivariate information through the inclusion of a wide range of variables in the analysis and addresses data issues associated with the COVID-19 pandemic. The estimated output gap lines up well with the CEPR chronology of the business cycle for the euro area and we find that hours worked, more than the unemployment rate, provides the key source of information about labor utilization in the economy, especially in pinning down the depth of the output gap during the COVID-19 recession when the unemployment rate rose only moderately. Our findings suggest that labor market adjustments to the business cycle in the euro area occur more through the intensive, rather than extensive, margin.

ISBN
978-92-899-5303-0
Sprache
Englisch

Erschienen in
Series: ECB Working Paper ; No. 2716

Klassifikation
Wirtschaft
Methodological Issues: General
General Aggregative Models: Forecasting and Simulation: Models and Applications
Business Fluctuations; Cycles
Thema
Beveridge-Nelson decomposition
output gap
Bayesian estimation
multivariate information

Ereignis
Geistige Schöpfung
(wer)
Morley, James C.
Rodriguez Palenzuela, Diego
Sun, Yiqiao
Wong, Benjamin
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2022

DOI
doi:10.2866/422710
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Morley, James C.
  • Rodriguez Palenzuela, Diego
  • Sun, Yiqiao
  • Wong, Benjamin
  • European Central Bank (ECB)

Entstanden

  • 2022

Ähnliche Objekte (12)