Artikel

A generative adversarial network approach to calibration of local stochastic volatility models

We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-forward neural networks and learn their parameters directly from the available market option prices. This should be seen in the context of neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to market prices. The minimization of the calibration functional relies strongly on a variance reduction technique based on hedging and deep hedging, which is interesting in its own right: it allows the calculation of model prices and model implied volatilities in an accurate way using only small sets of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a thorough statistical performance analysis on many samples of implied volatility smiles, showing the accuracy and stability of the method.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 8 ; Year: 2020 ; Issue: 4 ; Pages: 1-31 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
LSV calibration
neural SDEs
generative adversarial networks
deep hedging
variance reduction
stochastic optimization

Ereignis
Geistige Schöpfung
(wer)
Cuchiero, Christa
Khosrawi, Wahid
Teichmann, Josef
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/risks8040101
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Cuchiero, Christa
  • Khosrawi, Wahid
  • Teichmann, Josef
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)