Arbeitspapier

Conditional forecasts in dynamic multivariate models

In the existing literature, conditional forecasts in the vector autoregressive (VAR) framework have not been commonly presented with probability distributions or error bands. This paper develops Bayesian methods for computing such distributions or bands. It broadens the class of conditional forecasts to which the methods can be applied. The methods work for both structural and reduced-form VAR models and, in contrast to common practices, account for the parameter uncertainty in small samples. Empirical examples under the flat prior and under the reference prior of Sims and Zha (1998) are provided to show the use of these methods.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 98-22

Klassifikation
Wirtschaft
Thema
Econometric models
Forecasting
Time-series analysis

Ereignis
Geistige Schöpfung
(wer)
Waggoner, Daniel F.
Zha, Tao
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
1998

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Waggoner, Daniel F.
  • Zha, Tao
  • Federal Reserve Bank of Atlanta

Entstanden

  • 1998

Ähnliche Objekte (12)