Arbeitspapier

Bayesian methods for dynamic multivariate models

If multivariate dynamic models are to be used to guide decision-making, it is important that it be possible to provide probability assessments of their results. Bayesian VAR models in the existing literature have not commonly (in fact, not at all as far as we know) been presented with error bands around forecasts or policy projections based on the posterior distribution. In this paper we show that it is possible to introduce prior information in both reduced form and structural VAR models without introducing substantial new computational burdens. With our approach, identified VAR analysis of large systems (e.g., 20-variable models) becomes possible.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 96-13

Klassifikation
Wirtschaft
Thema
Econometric models
Forecasting

Ereignis
Geistige Schöpfung
(wer)
Sims, Christopher A.
Zha, Tao
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
1996

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Sims, Christopher A.
  • Zha, Tao
  • Federal Reserve Bank of Atlanta

Entstanden

  • 1996

Ähnliche Objekte (12)