Arbeitspapier

Uncertainty Quantification and Global Sensitivity Analysis for Economic Models

Sensitivity analysis assesses the influence of input parameters on the conclusion of a model. Traditional analysis methods—based on evaluating the model at a reference parameter vector and changing one parameter at a time—are local, linear, and usually do not capture interactions among the parameters. By contrast, the global sensitivity analysis that we present summarizes the parameters’ importance over a range of values, fully capturing nonlinearities and identifying interactions. Specifically, we propose Sobol’ indices, which are based on variance decomposition, and exemplify their use with a standard real business cycle model. Standard approaches to variance decomposition require a large number of model evaluations. To overcome this, we present the state-of-the-art approach for calculating Sobol’ indices, which is based on building a polynomial representation of the model from a limited number of evaluations. In addition, we use this polynomial representation to evaluate the univariate effects, which are conditional expectation functions that can be interpreted as a robust impact of a parameter on the model conclusions.

Sprache
Englisch

Erschienen in
Series: Economics Working Paper Series ; No. 17/265

Klassifikation
Wirtschaft
Mathematical Methods; Programming Models; Mathematical and Simulation Modeling: General
Computational Techniques; Simulation Modeling
Thema
computational techniques
uncertainty quantification
global sensitivity analysis
Wirtschaftsmodell
Wahrscheinlichkeitsrechnung
Sensitivitätsanalyse

Ereignis
Geistige Schöpfung
(wer)
Harenberg, Daniel
Marelli, Stefano
Sudret, Bruno
Winschel, Viktor
Ereignis
Veröffentlichung
(wer)
ETH Zurich, CER-ETH - Center of Economic Research
(wo)
Zurich
(wann)
2017

DOI
doi:10.3929/ethz-a-010820135
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Harenberg, Daniel
  • Marelli, Stefano
  • Sudret, Bruno
  • Winschel, Viktor
  • ETH Zurich, CER-ETH - Center of Economic Research

Entstanden

  • 2017

Ähnliche Objekte (12)