Artikel

Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models

This paper examines the issue of weak identification in maximum likelihood, motivated by problems with estimation and inference in a multidimensional dynamic stochastic general equilibrium model. We show that two forms of the classical score (Lagrange multiplier) test for a simple hypothesis concerning the full parameter vector are robust to weak identification. We also suggest a test for a composite hypothesis regarding a subvector of parameters. The suggested subset test is shown to be asymptotically exact when the nuisance parameter is strongly identified. We pay particular attention to the question of how to estimate Fisher information and we make extensive use of martingale theory.

Language
Englisch

Bibliographic citation
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 6 ; Year: 2015 ; Issue: 1 ; Pages: 123-152 ; New Haven, CT: The Econometric Society

Classification
Wirtschaft
Subject
Maximum likelihood
C(») test
score test
weak identification

Event
Geistige Schöpfung
(who)
Andrews, Isaiah
Mikusheva, Anna
Event
Veröffentlichung
(who)
The Econometric Society
(where)
New Haven, CT
(when)
2015

DOI
doi:10.3982/QE331
Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Andrews, Isaiah
  • Mikusheva, Anna
  • The Econometric Society

Time of origin

  • 2015

Other Objects (12)